Stats.php 54.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
<?php
//
// +----------------------------------------------------------------------+
// | PHP Version 4                                                        |
// +----------------------------------------------------------------------+
// | Copyright (c) 1997-2003 The PHP Group                                |
// +----------------------------------------------------------------------+
// | This source file is subject to version 2.0 of the PHP license,       |
// | that is bundled with this package in the file LICENSE, and is        |
// | available at through the world-wide-web at                           |
// | http://www.php.net/license/2_02.txt.                                 |
// | If you did not receive a copy of the PHP license and are unable to   |
// | obtain it through the world-wide-web, please send a note to          |
// | license@php.net so we can mail you a copy immediately.               |
// +----------------------------------------------------------------------+
// | Authors: Jesus M. Castagnetto <jmcastagnetto@php.net>                |
// +----------------------------------------------------------------------+
//
// $Id: Stats.php,v 1.15 2003/06/01 11:40:30 jmcastagnetto Exp $
//

include_once 'PEAR.php';

/**
* @package Math_Stats
*/

// Constants for defining the statistics to calculate /*{{{*/
/**
* STATS_BASIC to generate the basic descriptive statistics
*/
define('STATS_BASIC', 1);
/**
* STATS_FULL to generate also higher moments, mode, median, etc.
*/
define('STATS_FULL', 2);
/*}}}*/

// Constants describing the data set format /*{{{*/
/**
* STATS_DATA_SIMPLE for an array of numeric values. This is the default.
* e.g. $data = array(2,3,4,5,1,1,6);
*/
define('STATS_DATA_SIMPLE', 0);
/**
* STATS_DATA_CUMMULATIVE for an associative array of frequency values,
* where in each array entry, the index is the data point and the
* value the count (frequency):
* e.g. $data = array(3=>4, 2.3=>5, 1.25=>6, 0.5=>3)
*/
define('STATS_DATA_CUMMULATIVE', 1);
/*}}}*/

// Constants defining how to handle nulls /*{{{*/
/**
* STATS_REJECT_NULL, reject data sets with null values. This is the default.
* Any non-numeric value is considered a null in this context.
*/
define('STATS_REJECT_NULL', -1);
/**
* STATS_IGNORE_NULL, ignore null values and prune them from the data.
* Any non-numeric value is considered a null in this context.
*/
define('STATS_IGNORE_NULL', -2);
/**
* STATS_USE_NULL_AS_ZERO, assign the value of 0 (zero) to null values.
* Any non-numeric value is considered a null in this context.
*/
define('STATS_USE_NULL_AS_ZERO', -3);
/*}}}*/

/**
* A class to calculate descriptive statistics from a data set.
* Data sets can be simple arrays of data, or a cummulative hash.
* The second form is useful when passing large data set,
* for example the data set:
*
* <pre>
* $data1 = array (1,2,1,1,1,1,3,3,4.1,3,2,2,4.1,1,1,2,3,3,2,2,1,1,2,2);
* </pre>
*
* can be epxressed more compactly as:
*
* <pre>
* $data2 = array('1'=>9, '2'=>8, '3'=>5, '4.1'=>2);
* </pre>
*
* Example of use:
*
* <pre>
* include_once 'Math/Stats.php';
* $s = new Math_Stats();
* $s->setData($data1);
* // or
* // $s->setData($data2, STATS_DATA_CUMMULATIVE);
* $stats = $s->calcBasic();
* echo 'Mean: '.$stats['mean'].' StDev: '.$stats['stdev'].' <br />\n';
*
* // using data with nulls
* // first ignoring them:
* $data3 = array(1.2, 'foo', 2.4, 3.1, 4.2, 3.2, null, 5.1, 6.2);
* $s->setNullOption(STATS_IGNORE_NULL);
* $s->setData($data3);
* $stats3 = $s->calcFull();
*
* // and then assuming nulls == 0
* $s->setNullOption(STATS_USE_NULL_AS_ZERO);
* $s->setData($data3);
* $stats3 = $s->calcFull();
* </pre>
*
* Originally this class was part of NumPHP (Numeric PHP package)
*
* @author  Jesus M. Castagnetto <jmcastagnetto@php.net>
* @version 0.8
* @access  public
* @package Math_Stats
*/
class Base {/*{{{*/
    // properties /*{{{*/

    /**
     * The simple or cummulative data set.
     * Null by default.
     *
     * @access  private
     * @var array
     */
    public $_data = null;

    /**
     * Expanded data set. Only set when cummulative data
     * is being used. Null by default.
     *
     * @access  private
     * @var array
     */
    public $_dataExpanded = null;

    /**
     * Flag for data type, one of STATS_DATA_SIMPLE or
     * STATS_DATA_CUMMULATIVE. Null by default.
     *
     * @access  private
     * @var int
     */
    public $_dataOption = null;

    /**
     * Flag for null handling options. One of STATS_REJECT_NULL,
     * STATS_IGNORE_NULL or STATS_USE_NULL_AS_ZERO
     *
     * @access  private
     * @var int
     */
    public $_nullOption;

    /**
     * Array for caching result values, should be reset
     * when using setData()
     *
     * @access private
     * @var array
     */
    public $_calculatedValues = array();

    /*}}}*/

    /**
     * Constructor for the class
     *
     * @access  public
     * @param   optional    int $nullOption how to handle null values
     * @return  object  Math_Stats
     */
    function Math_Stats($nullOption=STATS_REJECT_NULL) {/*{{{*/
        $this->_nullOption = $nullOption;
    }/*}}}*/

    /**
     * Sets and verifies the data, checking for nulls and using
     * the current null handling option
     *
     * @access public
     * @param   array   $arr    the data set
     * @param   optional    int $opt    data format: STATS_DATA_CUMMULATIVE or STATS_DATA_SIMPLE (default)
     * @return  mixed   true on success, a PEAR_Error object otherwise
     */
    function setData($arr, $opt=STATS_DATA_SIMPLE) {/*{{{*/
        if (!is_array($arr)) {
            return PEAR::raiseError('invalid data, an array of numeric data was expected');
        }
        $this->_data = null;
        $this->_dataExpanded = null;
        $this->_dataOption = null;
        $this->_calculatedValues = array();
        if ($opt == STATS_DATA_SIMPLE) {
            $this->_dataOption = $opt;
            $this->_data = array_values($arr);
        } else if ($opt == STATS_DATA_CUMMULATIVE) {
            $this->_dataOption = $opt;
            $this->_data = $arr;
            $this->_dataExpanded = array();
        }
        return $this->_validate();
    }/*}}}*/

    /**
     * Returns the data which might have been modified
     * according to the current null handling options.
     *
     * @access  public
     * @param boolean $expanded whether to return a expanded list, default is false
     * @return  mixed   array of data on success, a PEAR_Error object otherwise
     * @see _validate()
     */
    function getData($expanded=false) {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if ($this->_dataOption == STATS_DATA_CUMMULATIVE && $expanded) {
            return $this->_dataExpanded;
        } else {
            return $this->_data;
        }
    }/*}}}*/

    /**
     * Sets the null handling option.
     * Must be called before assigning a new data set containing null values
     *
     * @access  public
     * @return  mixed   true on success, a PEAR_Error object otherwise
     * @see _validate()
     */
    function setNullOption($nullOption) {/*{{{*/
        if ($nullOption == STATS_REJECT_NULL
            || $nullOption == STATS_IGNORE_NULL
            || $nullOption == STATS_USE_NULL_AS_ZERO) {
            $this->_nullOption = $nullOption;
            return true;
        } else {
            return PEAR::raiseError('invalid null handling option expecting: '.
                        'STATS_REJECT_NULL, STATS_IGNORE_NULL or STATS_USE_NULL_AS_ZERO');
        }
    }/*}}}*/

    /**
     * Transforms the data by substracting each entry from the mean and
     * dividing by its standard deviation. This will reset all pre-calculated
     * values to their original (unset) defaults.
     *
     * @access public
     * @return mixed true on success, a PEAR_Error object otherwise
     * @see mean()
     * @see stDev()
     * @see setData()
     */
    function studentize() {/*{{{*/
        $mean = $this->mean();
        if (PEAR::isError($mean)) {
            return $mean;
        }
        $std = $this->stDev();
        if (PEAR::isError($std)) {
            return $std;
        }
        if ($std == 0) {
            return PEAR::raiseError('cannot studentize data, standard deviation is zero.');
        }
        $arr  = array();
        if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
            foreach ($this->_data as $val=>$freq) {
                $newval = ($val - $mean) / $std;
                $arr["$newval"] = $freq;
            }
        } else {
            foreach ($this->_data as $val) {
                $newval = ($val - $mean) / $std;
                $arr[] = $newval;
            }
        }
        return $this->setData($arr, $this->_dataOption);
    }/*}}}*/

    /**
     * Transforms the data by substracting each entry from the mean.
     * This will reset all pre-calculated values to their original (unset) defaults.
     *
     * @access public
     * @return mixed true on success, a PEAR_Error object otherwise
     * @see mean()
     * @see setData()
     */
    function center() {/*{{{*/
        $mean = $this->mean();
        if (PEAR::isError($mean)) {
            return $mean;
        }
        $arr  = array();
        if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
            foreach ($this->_data as $val=>$freq) {
                $newval = $val - $mean;
                $arr["$newval"] = $freq;
            }
        } else {
            foreach ($this->_data as $val) {
                $newval = $val - $mean;
                $arr[] = $newval;
            }
        }
        return $this->setData($arr, $this->_dataOption);
    }/*}}}*/

    /**
     * Calculates the basic or full statistics for the data set
     *
     * @access  public
     * @param   int $mode   one of STATS_BASIC or STATS_FULL
     * @param boolean $returnErrorObject whether the raw PEAR_Error (when true, default),
     *                  or only the error message will be returned (when false), if an error happens.
     * @return  mixed   an associative array of statistics on success, a PEAR_Error object otherwise
     * @see calcBasic()
     * @see calcFull()
     */
    function calc($mode, $returnErrorObject=true) {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if ($mode == STATS_BASIC) {
            return $this->calcBasic($returnErrorObject);
        } elseif ($mode == STATS_FULL) {
            return $this->calcFull($returnErrorObject);
        } else {
            return PEAR::raiseError('incorrect mode, expected STATS_BASIC or STATS_FULL');
        }
    }/*}}}*/

    /**
     * Calculates a basic set of statistics
     *
     * @access  public
     * @param boolean $returnErrorObject whether the raw PEAR_Error (when true, default),
     *                  or only the error message will be returned (when false), if an error happens.
     * @return  mixed   an associative array of statistics on success, a PEAR_Error object otherwise
     * @see calc()
     * @see calcFull()
     */
    function calcBasic($returnErrorObject=true) {/*{{{*/
            return array (
                'min' => $this->__format($this->min(), $returnErrorObject),
                'max' => $this->__format($this->max(), $returnErrorObject),
                'sum' => $this->__format($this->sum(), $returnErrorObject),
                'sum2' => $this->__format($this->sum2(), $returnErrorObject),
                'count' => $this->__format($this->count(), $returnErrorObject),
                'mean' => $this->__format($this->mean(), $returnErrorObject),
                'stdev' => $this->__format($this->stDev(), $returnErrorObject),
                'variance' => $this->__format($this->variance(), $returnErrorObject),
                'range' => $this->__format($this->range(), $returnErrorObject)
            );
    }/*}}}*/

    /**
     * Calculates a full set of statistics
     *
     * @access  public
     * @param boolean $returnErrorObject whether the raw PEAR_Error (when true, default),
     *                  or only the error message will be returned (when false), if an error happens.
     * @return  mixed   an associative array of statistics on success, a PEAR_Error object otherwise
     * @see calc()
     * @see calcBasic()
     */
    function calcFull($returnErrorObject=true) {/*{{{*/
            return array (
                'min' => $this->__format($this->min(), $returnErrorObject),
                'max' => $this->__format($this->max(), $returnErrorObject),
                'sum' => $this->__format($this->sum(), $returnErrorObject),
                'sum2' => $this->__format($this->sum2(), $returnErrorObject),
                'count' => $this->__format($this->count(), $returnErrorObject),
                'mean' => $this->__format($this->mean(), $returnErrorObject),
                'median' => $this->__format($this->median(), $returnErrorObject),
                'mode' => $this->__format($this->mode(), $returnErrorObject),
                'midrange' => $this->__format($this->midrange(), $returnErrorObject),
                'geometric_mean' => $this->__format($this->geometricMean(), $returnErrorObject),
                'harmonic_mean' => $this->__format($this->harmonicMean(), $returnErrorObject),
                'stdev' => $this->__format($this->stDev(), $returnErrorObject),
                'absdev' => $this->__format($this->absDev(), $returnErrorObject),
                'variance' => $this->__format($this->variance(), $returnErrorObject),
                'range' => $this->__format($this->range(), $returnErrorObject),
                'std_error_of_mean' => $this->__format($this->stdErrorOfMean(), $returnErrorObject),
                'skewness' => $this->__format($this->skewness(), $returnErrorObject),
                'kurtosis' => $this->__format($this->kurtosis(), $returnErrorObject),
                'coeff_of_variation' => $this->__format($this->coeffOfVariation(), $returnErrorObject),
                'sample_central_moments' => array (
                            1 => $this->__format($this->sampleCentralMoment(1), $returnErrorObject),
                            2 => $this->__format($this->sampleCentralMoment(2), $returnErrorObject),
                            3 => $this->__format($this->sampleCentralMoment(3), $returnErrorObject),
                            4 => $this->__format($this->sampleCentralMoment(4), $returnErrorObject),
                            5 => $this->__format($this->sampleCentralMoment(5), $returnErrorObject)
                            ),
                'sample_raw_moments' => array (
                            1 => $this->__format($this->sampleRawMoment(1), $returnErrorObject),
                            2 => $this->__format($this->sampleRawMoment(2), $returnErrorObject),
                            3 => $this->__format($this->sampleRawMoment(3), $returnErrorObject),
                            4 => $this->__format($this->sampleRawMoment(4), $returnErrorObject),
                            5 => $this->__format($this->sampleRawMoment(5), $returnErrorObject)
                            ),
                'frequency' => $this->__format($this->frequency(), $returnErrorObject),
                'quartiles' => $this->__format($this->quartiles(), $returnErrorObject),
                'interquartile_range' => $this->__format($this->interquartileRange(), $returnErrorObject),
                'interquartile_mean' => $this->__format($this->interquartileMean(), $returnErrorObject),
                'quartile_deviation' => $this->__format($this->quartileDeviation(), $returnErrorObject),
                'quartile_variation_coefficient' => $this->__format($this->quartileVariationCoefficient(), $returnErrorObject),
                'quartile_skewness_coefficient' => $this->__format($this->quartileSkewnessCoefficient(), $returnErrorObject)
            );
    }/*}}}*/

    /**
     * Calculates the minimum of a data set.
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the minimum value on success, a PEAR_Error object otherwise
     * @see calc()
     * @see max()
     */
    function min() {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (!array_key_exists('min', $this->_calculatedValues)) {
            if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
                $min = min(array_keys($this->_data));
            } else {
                $min = min($this->_data);
            }
            $this->_calculatedValues['min'] = $min;
        }
        return $this->_calculatedValues['min'];
    }/*}}}*/

    /**
     * Calculates the maximum of a data set.
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the maximum value on success, a PEAR_Error object otherwise
     * @see calc()
     * @see min()
     */
    function max() {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (!array_key_exists('max', $this->_calculatedValues)) {
            if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
                $max = max(array_keys($this->_data));
            } else {
                $max = max($this->_data);
            }
            $this->_calculatedValues['max'] = $max;
        }
        return $this->_calculatedValues['max'];
    }/*}}}*/

    /**
     * Calculates SUM { xi }
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the sum on success, a PEAR_Error object otherwise
     * @see calc()
     * @see sum2()
     * @see sumN()
     */
    function sum() {/*{{{*/
        if (!array_key_exists('sum', $this->_calculatedValues)) {
            $sum = $this->sumN(1);
            if (PEAR::isError($sum)) {
                return $sum;
            } else {
                $this->_calculatedValues['sum'] = $sum;
            }
        }
        return $this->_calculatedValues['sum'];
    }/*}}}*/

    /**
     * Calculates SUM { (xi)^2 }
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the sum on success, a PEAR_Error object otherwise
     * @see calc()
     * @see sum()
     * @see sumN()
     */
    function sum2() {/*{{{*/
        if (!array_key_exists('sum2', $this->_calculatedValues)) {
            $sum2 = $this->sumN(2);
            if (PEAR::isError($sum2)) {
                return $sum2;
            } else {
                $this->_calculatedValues['sum2'] = $sum2;
            }
        }
        return $this->_calculatedValues['sum2'];
    }/*}}}*/

    /**
     * Calculates SUM { (xi)^n }
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @param   numeric $n  the exponent
     * @return  mixed   the sum on success, a PEAR_Error object otherwise
     * @see calc()
     * @see sum()
     * @see sum2()
     */
    function sumN($n) {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        $sumN = 0;
        if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
            foreach($this->_data as $val=>$freq) {
                $sumN += $freq * pow((double)$val, (double)$n);
            }
        } else {
            foreach($this->_data as $val) {
                $sumN += pow((double)$val, (double)$n);
            }
        }
        return $sumN;
    }/*}}}*/

    /**
     * Calculates PROD { (xi) }, (the product of all observations)
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the product on success, a PEAR_Error object otherwise
     * @see productN()
     */
    function product() {/*{{{*/
        if (!array_key_exists('product', $this->_calculatedValues)) {
            $product = $this->productN(1);
            if (PEAR::isError($product)) {
                return $product;
            } else {
                $this->_calculatedValues['product'] = $product;
            }
        }
        return $this->_calculatedValues['product'];
    }/*}}}*/

    /**
     * Calculates PROD { (xi)^n }, which is the product of all observations
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @param   numeric $n  the exponent
     * @return  mixed   the product on success, a PEAR_Error object otherwise
     * @see product()
     */
    function productN($n) {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        $prodN = 1.0;
        if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
            foreach($this->_data as $val=>$freq) {
                if ($val == 0) {
                    return 0.0;
                }
                $prodN *= $freq * pow((double)$val, (double)$n);
            }
        } else {
            foreach($this->_data as $val) {
                if ($val == 0) {
                    return 0.0;
                }
                $prodN *= pow((double)$val, (double)$n);
            }
        }
        return $prodN;

    }/*}}}*/

    /**
     * Calculates the number of data points in the set
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the count on success, a PEAR_Error object otherwise
     * @see calc()
     */
    function count() {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (!array_key_exists('count', $this->_calculatedValues)) {
            if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
                $count = count($this->_dataExpanded);
            } else {
                $count = count($this->_data);
            }
            $this->_calculatedValues['count'] = $count;
        }
        return $this->_calculatedValues['count'];
    }/*}}}*/

    /**
     * Calculates the mean (average) of the data points in the set
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the mean value on success, a PEAR_Error object otherwise
     * @see calc()
     * @see sum()
     * @see count()
     */
    function mean() {/*{{{*/
        if (!array_key_exists('mean', $this->_calculatedValues)) {
            $sum = $this->sum();
            if (PEAR::isError($sum)) {
                return $sum;
            }
            $count = $this->count();
            if (PEAR::isError($count)) {
                return $count;
            }
            $this->_calculatedValues['mean'] = $sum / $count;
        }
        return $this->_calculatedValues['mean'];
    }/*}}}*/

    /**
     * Calculates the range of the data set = max - min
     *
     * @access public
     * @return mixed the value of the range on success, a PEAR_Error object otherwise.
     */
    function range() {/*{{{*/
        if (!array_key_exists('range', $this->_calculatedValues)) {
            $min = $this->min();
            if (PEAR::isError($min)) {
                return $min;
            }
            $max = $this->max();
            if (PEAR::isError($max)) {
                return $max;
            }
            $this->_calculatedValues['range'] = $max - $min;
        }
        return $this->_calculatedValues['range'];

    }/*}}}*/

    /**
     * Calculates the variance (unbiased) of the data points in the set
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the variance value on success, a PEAR_Error object otherwise
     * @see calc()
     * @see __sumdiff()
     * @see count()
     */
    function variance() {/*{{{*/
        if (!array_key_exists('variance', $this->_calculatedValues)) {
            $variance = $this->__calcVariance();
            if (PEAR::isError($variance)) {
                return $variance;
            }
            $this->_calculatedValues['variance'] = $variance;
        }
        return $this->_calculatedValues['variance'];
    }/*}}}*/

    /**
     * Calculates the standard deviation (unbiased) of the data points in the set
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the standard deviation on success, a PEAR_Error object otherwise
     * @see calc()
     * @see variance()
     */
    function stDev() {/*{{{*/
        if (!array_key_exists('stDev', $this->_calculatedValues)) {
            $variance = $this->variance();
            if (PEAR::isError($variance)) {
                return $variance;
            }
            $this->_calculatedValues['stDev'] = sqrt($variance);
        }
        return $this->_calculatedValues['stDev'];
    }/*}}}*/

    /**
     * Calculates the variance (unbiased) of the data points in the set
     * given a fixed mean (average) value. Not used in calcBasic(), calcFull()
     * or calc().
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @param   numeric $mean   the fixed mean value
     * @return  mixed   the variance on success, a PEAR_Error object otherwise
     * @see __sumdiff()
     * @see count()
     * @see variance()
     */
    function varianceWithMean($mean) {/*{{{*/
        return $this->__calcVariance($mean);
    }/*}}}*/

    /**
     * Calculates the standard deviation (unbiased) of the data points in the set
     * given a fixed mean (average) value. Not used in calcBasic(), calcFull()
     * or calc().
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @param   numeric $mean   the fixed mean value
     * @return  mixed   the standard deviation on success, a PEAR_Error object otherwise
     * @see varianceWithMean()
     * @see stDev()
     */
    function stDevWithMean($mean) {/*{{{*/
        $varianceWM = $this->varianceWithMean($mean);
        if (PEAR::isError($varianceWM)) {
            return $varianceWM;
        }
        return sqrt($varianceWM);
    }/*}}}*/

    /**
     * Calculates the absolute deviation of the data points in the set
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the absolute deviation on success, a PEAR_Error object otherwise
     * @see calc()
     * @see __sumabsdev()
     * @see count()
     * @see absDevWithMean()
     */
    function absDev() {/*{{{*/
        if (!array_key_exists('absDev', $this->_calculatedValues)) {
            $absDev = $this->__calcAbsoluteDeviation();
            if (PEAR::isError($absdev)) {
                return $absdev;
            }
            $this->_calculatedValues['absDev'] = $absDev;
        }
        return $this->_calculatedValues['absDev'];
    }/*}}}*/

    /**
     * Calculates the absolute deviation of the data points in the set
     * given a fixed mean (average) value. Not used in calcBasic(), calcFull()
     * or calc().
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @param   numeric $mean   the fixed mean value
     * @return  mixed   the absolute deviation on success, a PEAR_Error object otherwise
     * @see __sumabsdev()
     * @see absDev()
     */
    function absDevWithMean($mean) {/*{{{*/
        return $this->__calcAbsoluteDeviation($mean);
    }/*}}}*/

    /**
     * Calculates the skewness of the data distribution in the set
     * The skewness measures the degree of asymmetry of a distribution,
     * and is related to the third central moment of a distribution.
     * A normal distribution has a skewness = 0
     * A distribution with a tail off towards the high end of the scale
     * (positive skew) has a skewness > 0
     * A distribution with a tail off towards the low end of the scale
     * (negative skew) has a skewness < 0
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the skewness value on success, a PEAR_Error object otherwise
     * @see __sumdiff()
     * @see count()
     * @see stDev()
     * @see calc()
     */
    function skewness() {/*{{{*/
        if (!array_key_exists('skewness', $this->_calculatedValues)) {
            $count = $this->count();
            if (PEAR::isError($count)) {
                return $count;
            }
            $stDev = $this->stDev();
            if (PEAR::isError($stDev)) {
                return $stDev;
            }
            $sumdiff3 = $this->__sumdiff(3);
            if (PEAR::isError($sumdiff3)) {
                return $sumdiff3;
            }
            $this->_calculatedValues['skewness'] = ($sumdiff3 / ($count * pow($stDev, 3)));
        }
        return $this->_calculatedValues['skewness'];
    }/*}}}*/

    /**
     * Calculates the kurtosis of the data distribution in the set
     * The kurtosis measures the degrees of peakedness of a distribution.
     * It is also called the "excess" or "excess coefficient", and is
     * a normalized form of the fourth central moment of a distribution.
     * A normal distributions has kurtosis = 0
     * A narrow and peaked (leptokurtic) distribution has a
     * kurtosis > 0
     * A flat and wide (platykurtic) distribution has a kurtosis < 0
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the kurtosis value on success, a PEAR_Error object otherwise
     * @see __sumdiff()
     * @see count()
     * @see stDev()
     * @see calc()
     */
    function kurtosis() {/*{{{*/
        if (!array_key_exists('kurtosis', $this->_calculatedValues)) {
            $count = $this->count();
            if (PEAR::isError($count)) {
                return $count;
            }
            $stDev = $this->stDev();
            if (PEAR::isError($stDev)) {
                return $stDev;
            }
            $sumdiff4 = $this->__sumdiff(4);
            if (PEAR::isError($sumdiff4)) {
                return $sumdiff4;
            }
            $this->_calculatedValues['kurtosis'] = ($sumdiff4 / ($count * pow($stDev, 4))) - 3;
        }
        return $this->_calculatedValues['kurtosis'];
    }/*}}}*/

    /**
     * Calculates the median of a data set.
     * The median is the value such that half of the points are below it
     * in a sorted data set.
     * If the number of values is odd, it is the middle item.
     * If the number of values is even, is the average of the two middle items.
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the median value on success, a PEAR_Error object otherwise
     * @see count()
     * @see calc()
     */
    function median() {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (!array_key_exists('median', $this->_calculatedValues)) {
            if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
                $arr =& $this->_dataExpanded;
            } else {
                $arr =& $this->_data;
            }
            $n = $this->count();
            if (PEAR::isError($n)) {
                return $n;
            }
            $h = intval($n / 2);
            if ($n % 2 == 0) {
                $median = ($arr[$h] + $arr[$h - 1]) / 2;
            } else {
                $median = $arr[$h + 1];
            }
            $this->_calculatedValues['median'] = $median;
        }
        return $this->_calculatedValues['median'];
    }/*}}}*/

    /**
     * Calculates the mode of a data set.
     * The mode is the value with the highest frequency in the data set.
     * There can be more than one mode.
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   an array of mode value on success, a PEAR_Error object otherwise
     * @see frequency()
     * @see calc()
     */
    function mode() {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (!array_key_exists('mode', $this->_calculatedValues)) {
            if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
                $arr = $this->_data;
            } else {
                $arr = $this->frequency();
            }
            arsort($arr);
            $mcount = 1;
            foreach ($arr as $val=>$freq) {
                if ($mcount == 1) {
                    $mode = array($val);
                    $mfreq = $freq;
                    ++$mcount;
                    continue;
                }
                if ($mfreq == $freq)
                    $mode[] = $val;
                if ($mfreq > $freq)
                    break;
            }
            $this->_calculatedValues['mode'] = $mode;
        }
        return $this->_calculatedValues['mode'];
    }/*}}}*/

    /**
     * Calculates the midrange of a data set.
     * The midrange is the average of the minimum and maximum of the data set.
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the midrange value on success, a PEAR_Error object otherwise
     * @see min()
     * @see max()
     * @see calc()
     */
    function midrange() {/*{{{*/
        if (!array_key_exists('midrange', $this->_calculatedValues)) {
            $min = $this->min();
            if (PEAR::isError($min)) {
                return $min;
            }
            $max = $this->max();
            if (PEAR::isError($max)) {
                return $max;
            }
            $this->_calculatedValues['midrange'] = (($max + $min) / 2);
        }
        return $this->_calculatedValues['midrange'];
    }/*}}}*/

    /**
     * Calculates the geometrical mean of the data points in the set
     * Handles cummulative data sets correctly
     *
     * @access public
     * @return mixed the geometrical mean value on success, a PEAR_Error object otherwise
     * @see calc()
     * @see product()
     * @see count()
     */
    function geometricMean() {/*{{{*/
        if (!array_key_exists('geometricMean', $this->_calculatedValues)) {
            $count = $this->count();
            if (PEAR::isError($count)) {
                return $count;
            }
            $prod = $this->product();
            if (PEAR::isError($prod)) {
                return $prod;
            }
            if ($prod == 0.0) {
                return 0.0;
            }
            if ($prod < 0) {
                return PEAR::raiseError('The product of the data set is negative, geometric mean undefined.');
            }
            $this->_calculatedValues['geometricMean'] = pow($prod , 1 / $count);
        }
        return $this->_calculatedValues['geometricMean'];
    }/*}}}*/

    /**
     * Calculates the harmonic mean of the data points in the set
     * Handles cummulative data sets correctly
     *
     * @access public
     * @return mixed the harmonic mean value on success, a PEAR_Error object otherwise
     * @see calc()
     * @see count()
     */
    function harmonicMean() {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (!array_key_exists('harmonicMean', $this->_calculatedValues)) {
            $count = $this->count();
            if (PEAR::isError($count)) {
                return $count;
            }
            $invsum = 0.0;
            if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
                foreach($this->_data as $val=>$freq) {
                    if ($val == 0) {
                        return PEAR::raiseError('cannot calculate a '.
                                'harmonic mean with data values of zero.');
                    }
                    $invsum += $freq / $val;
                }
            } else {
                foreach($this->_data as $val) {
                    if ($val == 0) {
                        return PEAR::raiseError('cannot calculate a '.
                                'harmonic mean with data values of zero.');
                    }
                    $invsum += 1 / $val;
                }
            }
            $this->_calculatedValues['harmonicMean'] = $count / $invsum;
        }
        return $this->_calculatedValues['harmonicMean'];
    }/*}}}*/

    /**
     * Calculates the nth central moment (m{n}) of a data set.
     *
     * The definition of a sample central moment is:
     *
     *     m{n} = 1/N * SUM { (xi - avg)^n }
     *
     * where: N = sample size, avg = sample mean.
     *
     * @access public
     * @param integer $n moment to calculate
     * @return mixed the numeric value of the moment on success, PEAR_Error otherwise
     */
    function sampleCentralMoment($n) {/*{{{*/
        if (!is_int($n) || $n < 1) {
            return PEAR::isError('moment must be a positive integer >= 1.');
        }

        if ($n == 1) {
            return 0;
        }
        $count = $this->count();
        if (PEAR::isError($count)) {
            return $count;
        }
        if ($count == 0) {
            return PEAR::raiseError("Cannot calculate {$n}th sample moment, ".
                    'there are zero data entries');
        }
        $sum = $this->__sumdiff($n);
        if (PEAR::isError($sum)) {
            return $sum;
        }
        return ($sum / $count);
    }/*}}}*/

    /**
     * Calculates the nth raw moment (m{n}) of a data set.
     *
     * The definition of a sample central moment is:
     *
     *     m{n} = 1/N * SUM { xi^n }
     *
     * where: N = sample size, avg = sample mean.
     *
     * @access public
     * @param integer $n moment to calculate
     * @return mixed the numeric value of the moment on success, PEAR_Error otherwise
     */
    function sampleRawMoment($n) {/*{{{*/
        if (!is_int($n) || $n < 1) {
            return PEAR::isError('moment must be a positive integer >= 1.');
        }

        $count = $this->count();
        if (PEAR::isError($count)) {
            return $count;
        }
        if ($count == 0) {
            return PEAR::raiseError("Cannot calculate {$n}th raw moment, ".
                    'there are zero data entries.');
        }
        $sum = $this->sumN($n);
        if (PEAR::isError($sum)) {
            return $sum;
        }
        return ($sum / $count);
    }/*}}}*/


    /**
     * Calculates the coefficient of variation of a data set.
     * The coefficient of variation measures the spread of a set of data
     * as a proportion of its mean. It is often expressed as a percentage.
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   the coefficient of variation on success, a PEAR_Error object otherwise
     * @see stDev()
     * @see mean()
     * @see calc()
     */
    function coeffOfVariation() {/*{{{*/
        if (!array_key_exists('coeffOfVariation', $this->_calculatedValues)) {
            $mean = $this->mean();
            if (PEAR::isError($mean)) {
                return $mean;
            }
            if ($mean == 0.0) {
                return PEAR::raiseError('cannot calculate the coefficient '.
                        'of variation, mean of sample is zero');
            }
            $stDev = $this->stDev();
            if (PEAR::isError($stDev)) {
                return $stDev;
            }

            $this->_calculatedValues['coeffOfVariation'] = $stDev / $mean;
        }
        return $this->_calculatedValues['coeffOfVariation'];
    }/*}}}*/

    /**
     * Calculates the standard error of the mean.
     * It is the standard deviation of the sampling distribution of
     * the mean. The formula is:
     *
     * S.E. Mean = SD / (N)^(1/2)
     *
     * This formula does not assume a normal distribution, and shows
     * that the size of the standard error of the mean is inversely
     * proportional to the square root of the sample size.
     *
     * @access  public
     * @return  mixed   the standard error of the mean on success, a PEAR_Error object otherwise
     * @see stDev()
     * @see count()
     * @see calc()
     */
    function stdErrorOfMean() {/*{{{*/
        if (!array_key_exists('stdErrorOfMean', $this->_calculatedValues)) {
            $count = $this->count();
            if (PEAR::isError($count)) {
                return $count;
            }
            $stDev = $this->stDev();
            if (PEAR::isError($stDev)) {
                return $stDev;
            }
            $this->_calculatedValues['stdErrorOfMean'] = $stDev / sqrt($count);
        }
        return $this->_calculatedValues['stdErrorOfMean'];
    }/*}}}*/

    /**
     * Calculates the value frequency table of a data set.
     * Handles cummulative data sets correctly
     *
     * @access  public
     * @return  mixed   an associative array of value=>frequency items on success, a PEAR_Error object otherwise
     * @see min()
     * @see max()
     * @see calc()
     */
    function frequency() {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (!array_key_exists('frequency', $this->_calculatedValues)) {
            if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
                $freq = $this->_data;
            } else {
                $freq = array();
                foreach ($this->_data as $val) {
                    $freq["$val"]++;
                }
                ksort($freq);
            }
            $this->_calculatedValues['frequency'] = $freq;
        }
        return $this->_calculatedValues['frequency'];
    }/*}}}*/

    /**
     * The quartiles are defined as the values that divide a sorted
     * data set into four equal-sized subsets, and correspond to the
     * 25th, 50th, and 75th percentiles.
     *
     * @access public
     * @return mixed an associative array of quartiles on success, a PEAR_Error otherwise
     * @see percentile()
     */
    function quartiles() {/*{{{*/
        if (!array_key_exists('quartiles', $this->_calculatedValues)) {
            $q1 = $this->percentile(25);
            if (PEAR::isError($q1)) {
                return $q1;
            }
            $q2 = $this->percentile(50);
            if (PEAR::isError($q2)) {
                return $q2;
            }
            $q3 = $this->percentile(75);
            if (PEAR::isError($q3)) {
                return $q3;
            }
            $this->_calculatedValues['quartiles'] = array (
                                        '25' => $q1,
                                        '50' => $q2,
                                        '75' => $q3
                                        );
        }
        return $this->_calculatedValues['quartiles'];
    }/*}}}*/

    /**
     * The interquartile mean is defined as the mean of the values left
     * after discarding the lower 25% and top 25% ranked values, i.e.:
     *
     *  interquart mean = mean(<P(25),P(75)>)
     *
     *  where: P = percentile
     *
     * @todo need to double check the equation
     * @access public
     * @return mixed a numeric value on success, a PEAR_Error otherwise
     * @see quartiles()
     */
    function interquartileMean() {/*{{{*/
        if (!array_key_exists('interquartileMean', $this->_calculatedValues)) {
            $quart = $this->quartiles();
            if (PEAR::isError($quart)) {
                return $quart;
            }
            $q3 = $quart['75'];
            $q1 = $quart['25'];
            $sum = 0;
            $n = 0;
            foreach ($this->getData(true) as $val) {
                if ($val >= $q1 && $val <= $q3) {
                    $sum += $val;
                    ++$n;
                }
            }
            if ($n == 0) {
                return PEAR::raiseError('error calculating interquartile mean, '.
                                        'empty interquartile range of values.');
            }
            $this->_calculatedValues['interquartileMean'] = $sum / $n;
        }
        return $this->_calculatedValues['interquartileMean'];
    }/*}}}*/

    /**
     * The interquartile range is the distance between the 75th and 25th
     * percentiles. Basically the range of the middle 50% of the data set,
     * and thus is not affected by outliers or extreme values.
     *
     *  interquart range = P(75) - P(25)
     *
     *  where: P = percentile
     *
     * @access public
     * @return mixed a numeric value on success, a PEAR_Error otherwise
     * @see quartiles()
     */
    function interquartileRange() {/*{{{*/
        if (!array_key_exists('interquartileRange', $this->_calculatedValues)) {
            $quart = $this->quartiles();
            if (PEAR::isError($quart)) {
                return $quart;
            }
            $q3 = $quart['75'];
            $q1 = $quart['25'];
            $this->_calculatedValues['interquartileRange'] = $q3 - $q1;
        }
        return $this->_calculatedValues['interquartileRange'];
    }/*}}}*/

    /**
     * The quartile deviation is half of the interquartile range value
     *
     *  quart dev = (P(75) - P(25)) / 2
     *
     *  where: P = percentile
     *
     * @access public
     * @return mixed a numeric value on success, a PEAR_Error otherwise
     * @see quartiles()
     * @see interquartileRange()
     */
    function quartileDeviation() {/*{{{*/
        if (!array_key_exists('quartileDeviation', $this->_calculatedValues)) {
            $iqr = $this->interquartileRange();
            if (PEAR::isError($iqr)) {
                return $iqr;
            }
            $this->_calculatedValues['quartileDeviation'] = $iqr / 2;
        }
        return $this->_calculatedValues['quartileDeviation'];
    }/*}}}*/

    /**
     * The quartile variation coefficient is defines as follows:
     *
     *  quart var coeff = 100 * (P(75) - P(25)) / (P(75) + P(25))
     *
     *  where: P = percentile
     *
     * @todo need to double check the equation
     * @access public
     * @return mixed a numeric value on success, a PEAR_Error otherwise
     * @see quartiles()
     */
    function quartileVariationCoefficient() {/*{{{*/
        if (!array_key_exists('quartileVariationCoefficient', $this->_calculatedValues)) {
            $quart = $this->quartiles();
            if (PEAR::isError($quart)) {
                return $quart;
            }
            $q3 = $quart['75'];
            $q1 = $quart['25'];
            $d = $q3 - $q1;
            $s = $q3 + $q1;
            $this->_calculatedValues['quartileVariationCoefficient'] = 100 * $d / $s;
        }
        return $this->_calculatedValues['quartileVariationCoefficient'];
    }/*}}}*/

    /**
     * The quartile skewness coefficient (also known as Bowley Skewness),
     * is defined as follows:
     *
     *  quart skewness coeff = (P(25) - 2*P(50) + P(75)) / (P(75) - P(25))
     *
     *  where: P = percentile
     *
     * @todo need to double check the equation
     * @access public
     * @return mixed a numeric value on success, a PEAR_Error otherwise
     * @see quartiles()
     */
    function quartileSkewnessCoefficient() {/*{{{*/
        if (!array_key_exists('quartileSkewnessCoefficient', $this->_calculatedValues)) {
            $quart = $this->quartiles();
            if (PEAR::isError($quart)) {
                return $quart;
            }
            $q3 = $quart['75'];
            $q2 = $quart['50'];
            $q1 = $quart['25'];
            $d = $q3 - 2*$q2 + $q1;
            $s = $q3 - $q1;
            $this->_calculatedValues['quartileSkewnessCoefficient'] = $d / $s;
        }
        return $this->_calculatedValues['quartileSkewnessCoefficient'];
    }/*}}}*/

    /**
     * The pth percentile is the value such that p% of the a sorted data set
     * is smaller than it, and (100 - p)% of the data is larger.
     *
     * A quick algorithm to pick the appropriate value from a sorted data
     * set is as follows:
     *
     * - Count the number of values: n
     * - Calculate the position of the value in the data list: i = p * (n + 1)
     * - if i is an integer, return the data at that position
     * - if i < 1, return the minimum of the data set
     * - if i > n, return the maximum of the data set
     * - otherwise, average the entries at adjacent positions to i
     *
     * The median is the 50th percentile value.
     *
     * @todo need to double check generality of the algorithm
     *
     * @access public
     * @param numeric $p the percentile to estimate, e.g. 25 for 25th percentile
     * @return mixed a numeric value on success, a PEAR_Error otherwise
     * @see quartiles()
     * @see median()
     */
    function percentile($p) {/*{{{*/
        $count = $this->count();
        if (PEAR::isError($count)) {
            return $count;
        }
        if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
            $data =& $this->_dataExpanded;
        } else {
            $data =& $this->_data;
        }
        $obsidx = $p * ($count + 1) / 100;
        if (intval($obsidx) == $obsidx) {
            return $data[($obsidx - 1)];
        } elseif ($obsidx < 1) {
            return $data[0];
        } elseif ($obsidx > $count) {
            return $data[($count - 1)];
        } else {
            $left = floor($obsidx - 1);
            $right = ceil($obsidx - 1);
            return ($data[$left] + $data[$right]) / 2;
        }
    }/*}}}*/

    // private methods

    /**
     * Utility function to calculate: SUM { (xi - mean)^n }
     *
     * @access private
     * @param   numeric $power  the exponent
     * @param   optional    double   $mean   the data set mean value
     * @return  mixed   the sum on success, a PEAR_Error object otherwise
     *
     * @see stDev()
     * @see variaceWithMean();
     * @see skewness();
     * @see kurtosis();
     */
    function __sumdiff($power, $mean=null) {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (is_null($mean)) {
            $mean = $this->mean();
            if (PEAR::isError($mean)) {
                return $mean;
            }
        }
        $sdiff = 0;
        if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
            foreach ($this->_data as $val=>$freq) {
                $sdiff += $freq * pow((double)($val - $mean), (double)$power);
            }
        } else {
            foreach ($this->_data as $val)
                $sdiff += pow((double)($val - $mean), (double)$power);
        }
        return $sdiff;
    }/*}}}*/

    /**
     * Utility function to calculate the variance with or without
     * a fixed mean
     *
     * @access private
     * @param $mean the fixed mean to use, null as default
     * @return mixed a numeric value on success, a PEAR_Error otherwise
     * @see variance()
     * @see varianceWithMean()
     */
    function __calcVariance($mean = null) {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        $sumdiff2 = $this->__sumdiff(2, $mean);
        if (PEAR::isError($sumdiff2)) {
            return $sumdiff2;
        }
        $count = $this->count();
        if (PEAR::isError($count)) {
            return $count;
        }
        if ($count == 1) {
            return PEAR::raiseError('cannot calculate variance of a singe data point');
        }
        return  ($sumdiff2 / ($count - 1));
    }/*}}}*/

    /**
     * Utility function to calculate the absolute deviation with or without
     * a fixed mean
     *
     * @access private
     * @param $mean the fixed mean to use, null as default
     * @return mixed a numeric value on success, a PEAR_Error otherwise
     * @see absDev()
     * @see absDevWithMean()
     */
    function __calcAbsoluteDeviation($mean = null) {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        $count = $this->count();
        if (PEAR::isError($count)) {
            return $count;
        }
        $sumabsdev = $this->__sumabsdev($mean);
        if (PEAR::isError($sumabsdev)) {
            return $sumabsdev;
        }
        return $sumabsdev / $count;
    }/*}}}*/

    /**
     * Utility function to calculate: SUM { | xi - mean | }
     *
     * @access  private
     * @param   optional    double   $mean   the mean value for the set or population
     * @return  mixed   the sum on success, a PEAR_Error object otherwise
     *
     * @see absDev()
     * @see absDevWithMean()
     */
    function __sumabsdev($mean=null) {/*{{{*/
        if ($this->_data == null) {
            return PEAR::raiseError('data has not been set');
        }
        if (is_null($mean)) {
            $mean = $this->mean();
        }
        $sdev = 0;
        if ($this->_dataOption == STATS_DATA_CUMMULATIVE) {
            foreach ($this->_data as $val=>$freq) {
                $sdev += $freq * abs($val - $mean);
            }
        } else {
            foreach ($this->_data as $val) {
                $sdev += abs($val - $mean);
            }
        }
        return $sdev;
    }/*}}}*/

    /**
     * Utility function to format a PEAR_Error to be used by calc(),
     * calcBasic() and calcFull()
     *
     * @access private
     * @param mixed $v value to be formatted
     * @param boolean $returnErrorObject whether the raw PEAR_Error (when true, default),
     *                  or only the error message will be returned (when false)
     * @return mixed if the value is a PEAR_Error object, and $useErrorObject
     *              is false, then a string with the error message will be returned,
     *              otherwise the value will not be modified and returned as passed.
     */
    function __format($v, $useErrorObject=true) {/*{{{*/
        if (PEAR::isError($v) && $useErrorObject == false) {
            return $v->getMessage();
        } else {
            return $v;
        }
    }/*}}}*/

    /**
     * Utility function to validate the data and modify it
     * according to the current null handling option
     *
     * @access  private
     * @return  mixed true on success, a PEAR_Error object otherwise
     *
     * @see setData()
     */
    function _validate() {/*{{{*/
        $flag = ($this->_dataOption == STATS_DATA_CUMMULATIVE);
        foreach ($this->_data as $key=>$value) {
            $d = ($flag) ? $key : $value;
            $v = ($flag) ? $value : $key;
            if (!is_numeric($d)) {
                switch ($this->_nullOption) {
                    case STATS_IGNORE_NULL :
                        unset($this->_data["$key"]);
                        break;
                    case STATS_USE_NULL_AS_ZERO:
                        if ($flag) {
                            unset($this->_data["$key"]);
                            $this->_data[0] += $v;
                        } else {
                            $this->_data[$key] = 0;
                        }
                        break;
                    case STATS_REJECT_NULL :
                    default:
                        return PEAR::raiseError('data rejected, contains NULL values');
                        break;
                }
            }
        }
        if ($flag) {
            ksort($this->_data);
            $this->_dataExpanded = array();
            foreach ($this->_data as $val=>$freq) {
                $this->_dataExpanded = array_pad($this->_dataExpanded, count($this->_dataExpanded) + $freq, $val);
            }
            sort($this->_dataExpanded);
        } else {
            sort($this->_data);
        }
        return true;
    }/*}}}*/

}/*}}}*/

// vim: ts=4:sw=4:et:
// vim6: fdl=1: fdm=marker:

?>